Tyrosine phosphorylation of rod cyclic nucleotide-gated channels switches off Ca2+/calmodulin inhibition.

نویسندگان

  • Jeffrey L Krajewski
  • Charles W Luetje
  • Richard H Kramer
چکیده

Cyclic nucleotide-gated (CNG) ion channels are crucial for phototransduction in rod photoreceptors. Light triggers a biochemical cascade that reduces the concentration of cGMP in rods, closing CNG channels, which leads to membrane potential hyperpolarization and a decrease in the concentration of intracellular Ca2+. During light adaptation, the sensitivity of CNG channels to cGMP is decreased by Ca2+, which in conjunction with calmodulin (CaM), binds directly to CNG channels. The cGMP sensitivity of rod CNG channels is also reduced by phosphorylation of specific tyrosine residues in the three CNGA1 subunits and one CNGB1 subunit that comprise the rod channel. Here we show that phosphorylation prevents Ca2+/CaM inhibition. Experiments on native channels in rod outer segments and expressed channels in Xenopus oocytes show that Ca2+/CaM inhibition can be toggled off or on by promoting phosphorylation or dephosphorylation, respectively. Experiments in which the crucial tyrosine phosphorylation sites in CNGA1 and CNGB1 are replaced with phenylalanines show that residue Y498 in CNGA1 is the phosphorylation site responsible for regulating Ca2+/CaM inhibition. Ca2+/CaM inhibits the rod channel by binding to the N terminus of the CNGB1 subunit, causing it to uncouple from the C terminus of CNGA1. We propose that phosphorylation of CNGA1Y498, on the C terminus of CNGA1, triggers an equivalent uncoupling from the C terminus of CNGB1, thereby curtailing Ca2+/CaM inhibition. The control of CaM inhibition by CNG channel phosphorylation may be important for light adaptation and the regulation of phototransduction by IGF-1, a retinal paracrine factor that alters the tyrosine phosphorylation state of rod CNG channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-dependent modulation of rod photoreceptor cyclic nucleotide-gated channels mediated by phosphorylation of a specific tyrosine residue.

Cyclic nucleotide-gated (CNG) channels are crucial for phototransduction in vertebrate rod photoreceptors. The cGMP sensitivity of these channels is modulated by diffusible intracellular messengers, including Ca2+/calmodulin, contributing to negative feedback during sensory adaptation. Membrane-associated protein tyrosine kinases and phosphatases also modulate rod CNG channels, but whether this...

متن کامل

Dynamics of Ca2+-Calmodulin–dependent Inhibition of Rod Cyclic Nucleotide-gated Channels Measured by Patch-clamp Fluorometry

Cyclic nucleotide-gated (CNG) ion channels mediate cellular responses to sensory stimuli. In vertebrate photoreceptors, CNG channels respond to the light-induced decrease in cGMP by closing an ion-conducting pore that is permeable to cations, including Ca(2+) ions. Rod CNG channels are directly inhibited by Ca(2+)-calmodulin (Ca(2+)/CaM), but the physiological role of this modulation is unknown...

متن کامل

Noncatalytic Inhibition of Cyclic Nucleotide–gated Channels by Tyrosine Kinase Induced by Genistein

Rod photoreceptor cyclic nucleotide-gated (CNG) channels are modulated by tyrosine phosphorylation. Rod CNG channels expressed in Xenopus oocytes are associated with constitutively active protein tyrosine kinases (PTKs) and protein tyrosine phosphatases that decrease and increase, respectively, the apparent affinity of the channels for cGMP. Here, we examine the effects of genistein, a competit...

متن کامل

Interactions of Cyclic Nucleotide-Gated Channel Subunits and Protein Tyrosine Kinase Probed with Genistein

The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocy...

متن کامل

Mechanism of Inhibition of Cyclic Nucleotide–Gated Channel by Protein Tyrosine Kinase Probed with Genistein

Rod cyclic nucleotide-gated (CNG) channels are modulated by changes in tyrosine phosphorylation catalyzed by protein tyrosine kinases (PTKs) and phosphatases (PTPs). We used genistein, a PTK inhibitor, to probe the interaction between the channel and PTKs. Previously, we found that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel alpha-subunit (RETalpha), genistein trig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 31  شماره 

صفحات  -

تاریخ انتشار 2003